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ABSTRACT 

Gelfand-Kirillov dimension (GK) has proved to be a useful invariant for 

algebras over fields. In this paper  we generalize the notion of GK to 

algebras over commutat ive  Noetherian rings by replacing vector space 

dimension with reduced rank. It turns  out that  most  results about  GK 

have analogues for the new GK. 

1. In t roduc t ion  

Gelfand-Kirillov dimension (GK) has been an important invariant in the theory 

of algebras over a field for the past twenty years. Although it is rarely exact, 

it has the advantage over Krull dimension of being both symmetric and ideal 

invariant. It has been applied successfully to enveloping algebras, Weyl algebras, 

and more generally to filtered and graded algebras. The principal objective here is 

to extend the notion of Gelfand-Kirillov dimension to algebras over commutative 
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Noetherian rings; in fact, our techniques may be applied to algebras over an even 

wider class of base rings, which includes integral domains. Ideally, of course, one 

would like a notion of GK that worked for algebras over an arbitrary commutative 

ring, but that does not seem to be possible. 

The generalization we offer here is based on replacing vector space dimension 

with reduced rank. The very direct analogy with the "classical" GK allows us 

to generalize many results and proofs. The main drawback is that this notion 

of dimension is not sensitive to the presence of torsion within the algebra, a 

difficulty inherent in the choice of reduced rank as a starting point. It should 

also be mentioned that what is measured is the size of the algebra as a module 

over the chosen base ring rather than its absolute size (which presumably should 

take into account the "size" of the homomorphic image of the base ring present 

in the algebra). Strictly speaking, this is not in conflict with the classical GK 

dimension, which gives no information as to the field involved, but it does seem 

to cause difficulties when interpreting the meaning of dimension 1 for instance. 

This paper is organized as follows: Section 2 fixes our notation and introduces 
A 

GK, our generalized notion of GK, and its basic properties. Further, we focus 

on the special case where the algebra in question satisfies a polynomial identity. 
A 

Section 3 describes how GK behaves when the base ring is changed. We cover 

localization and finite extensions of the base ring, and also relate GK to the 

ordinary GK when the base ring is an affine algebra over a field. In Section 4 we 
A 

turn to GK for modules. It turns out to be just as simple to devise this as it is 

in the classical situation. Section 5 contains a number of applications. We give 

results on group algebras, prime ideals in ring extensions, Ore extensions, and 

enveloping algebras. 

2. Algebras over commutat ive  Noe ther ia n  rings 

Given an affine algebra over a field, A = k{al , . . . ,  an} say, GKk(A) is computed 

as  

CKk (A) = lim sup n log,~ (dikm V'~), 

lo~ x 
where V = 1. k + alk + . . .  + ank and log,(x) = log," 

It is well known that GKk(A) does not depend on the choice of generators of 

the algebra, see e.g [4, Lemma 1.1]. 

The crucial thing in the definition is that vector space dimension is available. 
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Assuming tha t  the base ring is just  a commuta t ive  (Noetherian) ring, one is faced 

with the challenge of finding a suitable replacement for dimension or, somehow, 

reducing to a case where "classical" GK dimensions can be calculated. As s ta ted 

in the introduction,  the approach taken here will be to follow the first course 

and replace dimension with reduced rank, but  later it will be clear tha t  our 

generalization can also be computed  as a supremum of certain classical GKs. 

Let us first fix some notation.  Throughout ,  C denotes a commuta t ive  ring 

and A a C algebra which is not necessarily affine. We use the following nota t ion 

when dealing with algebras: C[a~] denotes a commuta t ive  algebra, C{ai} a not 

necessarily commuta t ive  algebra, and C(ai} a free algebra. 

We use the nota t ion p = PR to denote the reduced rank over a ring R which 

is either clear from context or is indicated as a subscript. We assume the basic 

properties of reduced rank - -  see e.g. [7] for a description tha t  is more than  

los x and extend this definition to ample for our purposes. Also, let logn(x ) = logn, 

yield log n (0) = - ~ .  

Definition 2.1: Consider an affine C-algebra A -- C { a l , . . . ,  an}, where C has the 

proper ty  tha t  reduced rank is defined and finite for finitely generated modules. 

Define 

(1) G K c ( A )  = l imsupn logn(Pc(Mn)),  

where M = 1 �9 C + a lC + . . .  + anC. For non-affine algebras we define 

(2) G K c ( A )  -- sup G K c ( A ' ) ,  
A ~ 

where the supremum is taken over all afline subalgebras A t of A. 

This definition makes sense for all commuta t ive  rings having nilpotent prime 

radical tha t  are Goldie modulo their prime radical. However, we shall be a little 

more restrictive in what  follows. 

Throughout the sequel C will denote a commutative base ring for which the 

prime radical, N(C) ,  is a finitely generated ideal and C / N ( C )  is Goldie, e.g. C 

Noetherian, an integral domain, or has an Artinian ring of quotients. 

In the case where C is reduced, an obvious reduct ion may be made; for in this 

case we have 

p c ( M  n) = lengthQ(M n | Q) 

where Q is the semisimple quotient ring of C, and so 

A 

G K c ( A )  = GKQ(A | Q). 



76 R.A. BEAULIEU ET AL. Isr. J. Math. 

In fact, this sort of reduction may be carried out over all base rings under 

consideration as follows. Let N = N(C),  N = n l C  + . . .  + nsC, and suppose that 

N k = 0. Now let M denote a (right) C-module. There is a natural epimorphism 

M ~ ~ M N  

given by ( m l , . . . ,  m~) ~ ~ mini,  and hence we have epimorphisms 

M ~ ~ M N  ~'. 

These homomorphisms induce epimorphisms 

( M / M N )  ~-1 ~ M N " - I / M N  r, 

and hence we have 

P C / N ( M / M N )  <_ p c ( M )  = p c ( M / M N )  + . . .  + p c ( M N k - 1 / M N k )  

< (1 + s + . . .  + s k - 1 ) p e ( M / M N  ) constant �9 P C / N ( M / M N ) .  

These inequalities and the definition imply that 

GEe(A)  = GKG/N(A /AN)  

for all (affine) C-algebras - -  or phrased differently: The "obvious" nilpotent ideal 

in A can be disregarded. 

Letting Q = Q ( C / N )  be the classical ring of quotients of C / N  we see that the 

upshot of all this is that 

GEe(A)  = G K Q ( A / A N  @GIN Q), 

and this eases the computational pain quite a bit. 

Let us study the right hand side of this last equality a bit further. Note that  

the quotient ring Q is a direct sum of fields, Q = L1 @ . . .  @ Lt say, and denote 

the corresponding minimal idempotents in Q by e l , . . . , e t .  Appealing to the 

definition of GK we find a bound 

max{GKL, (Be/)} < GKQ(B) 

for any Q-algebra, B. 

In fact this is an equality. To see the reverse inequality we employ an argument 

similar to [4, Proposition 3.2]. Retaining the above notation, let V be a finitely 
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generated generating submodule for B. Then Vei is a generating subspace for 

Be~. Further let d(n) = lengthQ V" and di(n) = dimL, V'~e~. We may assume 

that a = max(GKL, (Be~)} < oc since otherwise the desired inequality is trivial. 

Now, for any e > 0 we have d~(n) < n ~+E/2 for large n, and hence 

d(n) = E di(n) <_ t �9 n ~+~/2 <_ n ~+~ 
i 

for large enough n, so that GKQ(B) _< a. This completes the proof of 

PROPOSITION 2.2: Let A be an a///ne C-algebra. Then 

GKc(A)  = max~{GKQ(c/p~)(A/AP~ | Q(C/P~))},  

where the maximum is taken over all minimal prime ideals in C. 

This direct analogue of the classical definition has its serious drawbacks, e.g. 

G-Kz(~(x,y)) = -c~ ,  or, more generally, any C(N(C))-torsion algebra has G'K 

-c~ .  This is of course a defect which makes GK ill suited for some of the 

intended applications, e.g. a "GK 1 implies PI" theorem [10] is in general out of 

the question. There are, however, also a number of positive results about GK, 

which we now review. The proofs here are easily obtained by mimicking the 

proofs of the corresponding claims for GK, for which we refer the reader to [4]. 

PROPOSITION 2.3: 

�9 Let A be an afllne C-algebra. Then GK does not depend on the choice of 

generators. 

�9 I r A  C_ B are C-algebras then GKc(A)  _< G K c(B) ,  and i f I  is an ideal in 
A 

a C-algebra A then G K c ( A / I )  <_ GKc(A).  

�9 I f  A _c B are C-algebras and BA is a finitely generated module then 

GKc(A)  = GKc(B) .  

�9 Let A be an arlene C-algebra. Then GKc(A)  _< 0 i f  and only i f  pc (A)  < c~. 

�9 Let A be a C-algebra. Then GKc(A)  > 0 implies GKc(A)  _> 1. 

PROPOSITION 2.4: Let A be an affine C-algebra and let I be an ideal in A 

which contains a (right) regular element c E A. Then 

GKc(A)  _> 1 + G K c ( A / I ) .  
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Proof." If I n Cc(N)  r g ,  then we immediately have G K c ( A / I )  = -c~ ,  and so 

the assertion follows. Consequently we may assume that  I n Cc(N) = 0.  

Now set A = A / A N  and -f = I + AN~AN.  Further, let B = A | Q, where 

Q = Q (C / N)  is the semisimple quotient ring of C / N ,  and let A / I  | Q ~- 

- A Q Q / I |  = B / J ,  where J is a proper two sided ideal of B. Note that 

B is an affine Q-algebra, and that J contains a (right) regular element of B. 

Since GKc(A)  = GKp(B)  and G K c ( A / I )  = G K p ( B / J )  it suffices to prove 

that  

GKp(B)  _> GKQ(B/J )  + 1, 

and this is carried out along the lines of [4, Proposition 3.15]. 

We fix some notation: Let B = Q{b l , . . . ,  bk} and let c E J be a (right) regular 

element. S e t M = l . Q + c . Q + b l - Q + . - . + b k . Q a n d M = M + J / J .  

Since Q is semisimple we have 

( M " A J ) $ D n  = M  n 

where 

and 

M n M , ~ + j  ~ _ - ~  
O n "  - -  ~ - -  

M n n J  J 

D~ n cB = O. 

We immediately conclude that  the sum Dn + cDn + . . .  + cnDn (in BQ) is direct 

and hence that  

D ,  @ cDn ~ ' "  @cnDn C_ M 2". 

Now let d(n) =lengthQ M n and d(n) = lengthQ M-~. Then 

d(2n) = lengthQ M 2" >_ n-  length D ,  =. n .  lengthQ M-~ = n .  d(n) 

and hence 
G"KQ(B/J) + 1 = 1 + l imsuplog n d(n) 

_< lim sup(log, d(n) + log,~ n) 

= lira sup(log, n .  d(n)) 

_< lira sup log. d(2n) 
h 

= lim sup log,. d(n) = GKQ (B) 

as desired. I 
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While we will apply this result to Ore Extensions in Section 5.4, it does not 

have the far reaching consequences that the corresponding result for GK does. 

For example, one would like to apply the result to the regular sequences of a 

commutative algebra, but this simply does not work, the problem being that  it 
A 

takes very little to drop GK to 0, or even to -oo .  For instance, consider Z[x] 
A 

which has GKzZ[x] = 1 but a regular sequence 2, x. 

We do at least get the following (expected) corollaries, but the possibility of 

GK being - c ~  will limit their effectiveness. 

COROLLARY 2.5: Let A be an affJne C-algebra with ali prime factors Goldie (e.g. 

A Noetherian). I f P  is a prime ideal of A, then 

A 

GKc(A)  _> GKc(A/P)  + ht(P) .  

A 

If in addition C is Artinian, then GKc(A)  _> h t (P)  for all prime ideals P of A. 

Proof: The first statement follows from the Proposition just as in [4, Corollary 

3.16]. The second claim is valid since over an Artinian base ring, GK is always 

greater than or equal to zero. | 

COROLLARY 2.6: Let A be a Noetherian, affine C-algebra, Q a prime ideal 

of A, and I an ideal of A which properly contains Q. If Q N C = (0), then 
A 

GKc(A/ I )  < GKc(A/Q).  

Proos We may assume that A is a prime, whence Cc(N(C)) = C \{0} .  Since 

I is a nonzero ideal of A, it contains a regular element. The result now follows 

immediately from Proposition 2.4. | 
A 

Now that  we have the basic axiomatic properties of GK down, it is worthwhile 

noting that  they do not make GK a dimension function in the sense of Borho [1]. 

The problem is his condition that  d(M) > 0 for M # 0 does not hold, and even 

though we formally has his "dropping condition" it's not as powerful without 

positivity of the dimension. 
A 

We note two more immediate consequences of the reduction of GK to a max- 

imum of finitely many ordinary GK's. First of all, we can say something very 

concrete about GK for PI  algebras. 

COROLLARY 2.7: If A is an aff/ne C-algebra satisfying a polynomial identity, 

then G"Kc(A) < oo. If furthermore A is Noetherian, then " ~ c ( A )  is an integer. 
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Proo~ The first claim follows readily from 2.2 and the corresponding result 

for ordinary GK which was proved by Berele (see [4, Corollary 10.7]). As for 

the second claim see [4, Corollary 10.16]. Do note, though, that  GKc(A) is not 

necessarily equal to the Krull dimension of A, but it is of course the maximum 

of the Krull dimensions of A/AP~ | Q(C/P~). | 

Secondly, there is Lorenz-Small type result about reducing to prime factors in 

the Noetherian PI case: 

COROLLARY 2.8: Suppose A is an affine, Noetherian C-algebra with prime 

radical N(A). IrA is PI, then 

G"'Ke(A) = G-Kc(A/N(A)) = max{G"-Kc(A/P)}, 

where P runs through the minimal primes of A. 

Proof." Let P1 , . . . ,  P,~ denote the minimal prime ideals of C and let Li = 

Q(C/Pi). Then, by 2.2, we have 

G"Kc(A) = max{GKL, (A/N(C)A | Li)}. 

Now clearly N(A)/N(C)A c N(A/N(C)A | Li), so by [6] we have 

GKL, (A/N(C)A | Li) = GKL, (A/N(A) | L,), 

and using once more one of the basic reductions we see that  

GKL,(A/N(A) | L~) < GKc/N(c)(A/N(A) | Q(C/N(C))) 

(3) = GKc(A/N(A)), 

and the first equality follows. The second follows easily, as in [6], from the 

embedding A/N(A) "--* $ A / P  where P runs through the minimal primes of A. 

| 

To conclude this section, we mention two classical results which, while not true 

in general, are valid if we make some further assumptions on our algebra. 

PROPOSITION 2.9: Let C be a commutative Artinian ring and A an arlene, 

Noetherian PI algebra. Then G'~'gc(A) = [A[, the classical Krull dimension of 

A. 
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Proos The main point here is that for an Artinian base ring C with prime 

radical N -- N(C) we have 

A A 

GKc(A)  = GKc/N(A/AN), 

and C/N is a direct sum of fields, C/N = L1 @ "" @ Lk, with corresponding 

idempotents ei say. The calculation of GK then reduces to simply 

A 

GKc(A)  = miax {GKL, ((A/AN).  el)} 

by Proposition 2.2. 

The claim now follows from the analogous result for GK [4, Corollary 10.16] 

by noting that [A[ -- maxi [Aei] = maxi I(A/AN). ell. | 

Note that the hypotheses in the next result are automatically satisfied if either 

the algebra A is prime (and faithful), or the base ring C is Artinian. 

PROPOSITION 2.10: Suppose that A is an afllne C-algebra such that A / P A  is 
h 

a torsionfree C/P-algebra for each minima/prime P ofC. I fGKc(A) _< 1, then 

A is PI. 

Proof Employing the notation of Corollary 2.8, the hypotheses guarantee that 

A/AP r A /AP | Q(C/P) for all minimal prime ideals P in C, and that in each 

case GKQ(c/p)(A/AP | Q(C/P)) < 1. It follows then from [10, Theorem] that 

each A/AP is PI. 

Now we also have the embedding A~ A(AP) r ~ A / A P ,  whence A~ N(AP) 

is PI. As N(AP) is nilpotent, we conclude that A is PI. | 

3. Loc a l i z a t i on  a n d  change  o f  base  r ing  

The results obtained so far indicate that results involving assumptions on GK 

can often be established with the additional hypothesis that  C is an integral 

domain and then, in many cases, lifted back to the reduced case, and so all the 

way to the general case. In an effort to extend these reduction techniques, we 

now consider central localization in the algebra, as well as the effect of changing 

the base ring to a related ring. 

The first result is closely related to [4, Proposition 4.2]. 
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PROPOSITION 3.1: Let C be reduced and A a C-algebra. Suppose that S is 

multiplicatively closed subset of regular elements of Z(A) - -  the center of A. 

Then 

GKc(A)  = GKc(As) .  

Proof." The general case follows easily from the special case where C is an 

integral domain. If C is an integral domain we have GKc(A)  = GKk(A @ k) 

where k is the quotient field of C by Proposition 3.2 whence we are done by [4, 

Proposition 4.2]. | 

Unlike the classical case, it is possible to localize with respect to a multiplica- 

tively closed subset S of the base ring C. Proposition 2.2 immediately implies 

PROPOSITION 3.2: Let C be reduced and A an affine C-algebra. Suppose that 

S is multiplicatively dosed subset of regular elements of C. Then 

GKc(A) = GKcs (As). 

Pushing this idea in a slightly different direction, we compare the dimensions 

of a single algebra computed over related central subrings. 

LEMMA 3.3: Let C be an integral domain which is module finite over a subring 

Co. Further, let A be an affine C-algebra. Then 

A 

GKco A = GKcA. 

Proof'. Let L and Lo denote the quotient fields of C and Co. Clearly m = 

dimLo L < co and L = C @co Lo. 

Notice that  A is an affine algebra over Co and let V be a finite dimensional Co- 

generating subspace for A containing 1. Of course V is a C-generating subspace 

as well. If {v~ @ 1} is a basis for V n @c L then {vl @ 1} is a linearly independent 

set in V n @co Lo, thus 

dim V ~ @Co Lo _> dim V n @c L. 
Lo L 

Hence GKcoA _> GKcA. 

Conversely, we have that  

dim V n @co Lo _< m .  dim V n @c L, 
Lo L 

and this implies GKcoA < GKcA. | 
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Remark: Actually Lemma 3.3 is true for reduced rings C and Co with an 

analogous argument. 

PROPOSITION 3.4: Let A be a prime, affine, faithful C-algebra, where C is an 

afl/ne algebra over a field k. Then 
A 

GKk A >_ G K c A  + GKk C, 

and i f  A is P I  we have . . . .  

P r o o f  Notice that  C is an integral domain and that  GKk C = trdeg k C -- [C[ = 

n .  

By the Noether Normalization Lemma we have R = k [ t l , . . . ,  tn] C_ C and C 
A A 

is a finitely generated R-module. Now Lemma 3.3 gives that  G K c A  = G K n A .  

Thus our claim is 

GKk A >_ G K R A  + n. 

Let A = R { v l , . . . , v t }  and V = 1 �9 R + v l R  + . . .  + v tR.  Further let 

= 1 . k + v l k + . . . + v l k + t l k + . . . + t n k  

and 

~ ( m ) =  dim V m |  k ( Q , . . . , t n ) .  
k(tl ..... tn) 

A naive estimate yields [4, p. 10] 

d im~2m > ~ ( m ) ( m -  1 + n~ 
k - k. n - l  ] 

from which it follows that  GKk A >_ G K n A  + n. 

For the second claim we recall (see e.g. [9]) that  

GKk A = trdeg k Z ( Q ( A ) )  

where Q ( A )  is the Goldie quotient ring of A. Now the situation is such that  

k C_ k ( t ~ , . . . , t ~ )  C_ Z ( Q ( A ) )  

and the claim amounts to the fact that  transcendence degrees add up. | 

It  is well known that  equality is not true in general, even if C is a field. Indeed, 

let k be a field, K = k(t) ,  and 

A = K ( x , y ) / ( t x  - x 2 , t y  - y2). 

Then GKk K = 1, GKK A = 1, and G K k A  = ~ .  
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4. GK for  m o d u l e s  a n d  f i l t e r e d / g r a d e d  t e c h n i q u e s  

We define GK for modules mimicking the usual definition of GK for modules. 

Definition 4.1: Let A = C{ax , . . . , an}  and let M = m x A  + . . .  + m~A be a 

finitely generated A-module. Further let V = 1 �9 C + a lC  + . . .  + anC, and 

Mo = m l C  + . . .  + mlC.  Now define 

G K c  (M)  = lim supn log n (Pc ( M o Y  ~) ). 

For modules not necessarily finitely generated let G K c ( M )  = sup G K c M  ~, where 

the supremum is over all finitely generated submodules of M. 

Dealing with modules instead of algebras raises the question of whether the 

two dimensions agree "when they should." To be precise: Consider an inclusion 

of C-algebras A _C B. It does in fact follow fairly directly from the definitions 

that G K c B  = GKc  (BA). 

In analogy with Proposition 2.2 one can reduce the calculation of G K c M  to a 

maximum of ordinary GK's. Following the proof given there we get 

PROPOSITION 4.2: With the notation of  Definition 4.1 we have 

G K c M  = max/GKQ(c/p,)  (M/MP~ | Q(C/Pi ) )  

where Pi denotes the minimal primes of C. 

We now note a couple of results that are analogous to well known theorems 

for GK. They will be useful in applications. The original proofs work because 

localization is an exact functor and reduced rank is additive over short exact 

sequences. We refer to [4, Chapter 5] for details. 

PROPOSITION 4.3: Let A be an a//~ne algebra over a commutative Noetherian 

ring C, and let M and Mi be finitely generated right A-modules. Then 

�9 GKc(@i~IM/) = max /GKc(Mi) .  

�9 F o r O ~ M l ~ M ~ M 2 ~ O w e h a v e  

G K c ( M )  _> maxi{GKc(Mi)}.  

�9 I f M I  = 0 for an ideal I ,~ A then G K c ( M A )  = GKc(MA/x ) .  

�9 G K c ( M )  <_ GKc(A).  
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�9 G-'Kc(Y~=I Mi) = max4 GI"Kc(Mi). 

PROPOSITION 4.4: Suppose that  A and B axe a n n e  C-algebras, and that  M is 

an A - B-bimodule which is tinitely generated as an A-module. Then 

G K c ( M B )  = G S c ( B / ( i n n  M s ) )  

and 
A A 

G K c ( M B )  <_ G K c ( A M ) .  

Proof." We sketch the proof which is similar to [4, Lemma 5.3]. To prove the first 

inequality notice that  B~ Ann MB embeds in the direct sum of a finite number 

of copies of M, and hence G K c B / A n n  MB <_ G K c M .  The other inequality is 

clear by Proposition 4.3. 

For the second claim, let B = C {b l , . . . , b s } ,  V = 1 �9 C + blC + . . .  + bsC, and 

M '  = ml  B + . . .  + mk B C M -- Aff~l + " "  + ff~z be a finitely generated submodule 

of MB. Further, let M "  = ~-'~i m i C  + y~ ChiC. Clearly M ' V  n C_ M " V  ~ for all 

integers n _> 0. 

M " V  is a finitely generated C-module and since A M "  D_ M " V  we can find 

a finitely generated C-module W c_ A such that  W M "  D M " V .  With these 

choices we have 

M ' V  ~ C M " V  ~ C W ~  M '' 

for any n > 0, and it follows that  GKcM~B <_ G K c M ~  ~ G K c  A M  as desired. 
| 

COROLLARY 4.5: Let A and B be a//ine C-algebras. I f  AMB is a bimodule 

which is finitely generated on both sides, then 

A h 

G K c ( A M )  = GKc(MB) ,  

and i f  furthermore M is faithful on both sides, then 

A A 

G K c ( A )  = G K c ( B ) .  

Now we move on to filtered and graded results. We consider a C-algebra R with 

an exhaustive filtration {FnR}n>0 of C-submodules of R. We have the associated 

graded algebra gr(R) = ~ n > o  F,~R/Fn_IR.  We single out the so-called natural  

filtration of an affine algebra R = C { a l , . . . ,  ak}, which is obtained by letting 

M = 1C + a lC  + . . .  + akC and setting FnR = M n. 
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Similar definitions apply to modules: Let M be an R-module (R a filtered 

C-Mgebra). For a filtration of M {FnM}n>o of C=submodules of M we have 

the associated graded module gr(M) = ~,~>0 F n M / F n - I M  which is a gr(R)- 

module. It is standard that  M is finitely generated or Noetherian if gr(M) 

is. Further we shall have occasion to use the standard filtration of a finitely 

generated module over an affine algebra. Explicitly, let M = m l R  + . . .  + m k R  

and V = m l C + . - .  + m kC. Now define a filtration of M by F n M  = V F~ R where 

{FnR} is the natural filtration of R. 

For details on filtered modules we refer the reader to [7]. 

The examples of filtered rings we have in mind are Ore extensions, Weyl 

algebras, and enveloping algebras. Before giving the explicit results we sketch 

proofs of generalities on GK and filtered modules. 

Relating GK of a module to the GK of its associated graded module is fairly 

simple. The following is obtained following [4, Chapter 6] mutatis mutandis, 

noting that  reduced rank is additive over short exact sequences. 

PROPOSITION 4.6: Let  R be a filtered C-algebra and M an R module. Then 

A A 

G K c  gr(M) _< G K c M .  

The reverse inequality is only true under some additional hypothesis: 

PROPOSITION 4.7: Let R be a filtered atone C-algebra and let M a finitely 

generated R-module. Then 

G K c  gr(M) = G K c M .  

These results suffice to get some desirable results for enveloping algebras, Weyl 

algebras, and almost commutative algebras, which we turn to in the next section. 

5. Applications 

Certainly the value of a generalization of classical GK should be judged on the 

basis of its applications, to which we now turn our attention. Here we explore how 

GK provides natural extensions of Gromov's Theorem concerning group algebras 

and a theorem of E. Letzter which deals with finite ring extensions and the second 

layer condition, as well as how the standard results concerning Ore extensions 

and enveloping algebras may be established without requiring the presence of a 

field. 
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Consider the group algebra C[G] for some finitely generated group G. In case 

C is actually a field, Gromov's Theorem states that the GK dimension of C[G] 

will be finite if and only if G contains a nilpotent normal subgroup N of finite 

index. Moreover, in case N is itself a finitely generated group, the precise value 

of GKc(C[G]) may be given in terms of the torsionfree ranks of the finitely 

generated abelian groups which occur in the lower central series of N. These 

results are easily extended to those base rings C for which GKc(C[G]) is defined. 

THEOREM 5.1  (Gromov): 

(1) Let G be a finitely generated group. Then GKc(C[G]) < co if and only if 

G has a nilpotent normal subgroup N of finite index in G. 

(2) Let N be a finitely generated nilpotent group, with lower central series 

N = NI D N2 D . . .  D Nk = I. Then 

k - 1  

where 

G'Kc(C[N]) = Z j d j ,  
j=l 

dj = rank(Nj/Nj+I)  = lengthQ (Nj/Nj+I | Q). 

Proo~ (1) We reduce to the case where C is a field. Then GK(C[G]) < co, 

whereupon the standard result may be applied. But this reduction is easy given 

Proposition 2.2 and the fact that  C[G] is a free C-module; if we denote the 

minimal primes of C by P1, P2, - . . ,  Pn and the quotient field of C/Pi by Li, then 

GK(C[G]) < co r GKL,(C[G]/Pi[G] | L~) < co for a l l /  

v> GK/,(~--~:. [G] | L~) < co for all i 

v> GKL,(Li[G]) < co for all i 

v> G has a nilpotent normal subgroup Nof finite index in G. 

(2) The reduction to the field case is as above, and so the standard result, [4, 

11.11], may be applied. | 

We continue investigating the implications of finite dimensionality by showing 

that some results of E. Letzter on extensions of Noetherian rings remain valid 

with GK replaced by GK. 

LEMMA 5.2 (after [5, Lemma 3.2]): Let A C_ B be an extension of faithful, 

af~ne C-algebras such that B is finitely generated as a right A-module. Assume 
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A 

further that A and B are Noetherian, that B is prime, and that B has finite GK. 

Then A has an Artinian quotient ring, and B is torsionfree as a right A-module. 

Proof." The proof goes through with only one potential point of difficulty. 

Nevertheless, we sketch the entire argument. 

Using the ascending chain condition on B - A sub-bimodules of B, we may 

obtain a series 

0 = Bo C . . .  C_ Bn = B 

of such sub-bimodules, as well as a set {Qi} of prime ideals of A, in a way which 

guarantees that  each Bi/Bi-1 is a finitely generated, faithful, and torsionfree 

B - A/Qi-bimodule (cf. [3, Chapter 7], for instance). Clearly QnQn-1.. .  Q1 = 

(0), so that each of the minimal primes of A may be found among the Qi. 

Moreover, our "finite GK" assumption allows us to conclude that  only min- 

imal primes may be found among the Q~. Indeed, Corollary 4.5 shows that 

G K c ( B )  = GKc(A/Qi)  for each i; moreover, as each Qi is the annihilator of 

some subfactor of B, and each such subfactor is C-faithful, we must have that  

Qi A C = (0). Now Corollary 2.6 applies, showing that the Qi are incomparable, 

and so all minimal. 

The result now follows by noting that,  if N is the prime radical of A, then 

since (Bi/Bi-1)A is CA(Qi)-torsionfree for all i it follows that (Bi/Bi-1)A is 

CA (N)-torsionfree for all i, and so in fact BA is itself CA (N)-torsionfree; therefore 

CA (N) C_ CB (0) n A C CA (0), whence Small's Theorem establishes the existence 

of an Artinian quotient ring for A (see e.g. [7, Corollary 4.1.4]). | 

The above Lemma is all that  is needed to prove 

PROPOSITION 5.3: Let A C_ B be an extension of Noetherian algebras, atone over 

the center of A, such that B is finitely generated as a right A-module. Suppose 

further that prime factors B / P of B have finite GK over the center of their 

subring A / ( P  N A). Then 

�9 If A satisfies the right second layer condition, then so does B. 

�9 If A satisfies the right strong second layer condition, then so does B. 

�9 I f  there exists a finite uniform upper bound for the Goldie ranks of prime 

factors of A, then the same holds true for B. 
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Proof'. See the proof of [5, Theorem 3.3], and use our Lemma 5.2 in place of 

Lemma 3.2 employed there. | 

A 

We next consider Ore extensions where, as one may expect, the GK of an Ore 

extension is precisely one more than the GK of the base ring (at least in the affine 

case - -  in the non-affine case the usual problems occur (see [4, 3.9]). The proof 

here is exactly as given in [4], and relies solely on the additivity of the reduced 

rank function. 

PROPOSITION 5.4 ([4, Proposition 3.5]): Let A be an aff/ne C-algebra, and 

suppose that 6 is a C-derivation. Then 

A A 

GKc(A[x;  5]) = GKc(A)  + 1. 

Prooiq Note first that  if M is a finitely generated generating subspace for A, 

then M + Cx is a finitely generated generating subspace for A[x; 6]. Now for any 

positive integer n, 

(M + Cx) 2~ ~_ M ~ + M~x + M~x 2 + . . .  + M~x ~, 

whence 

p c ( ( M  + Cx) 2n) ~ (n + 1)pc(Mn).  

It follows that  

GKc(A[x; 6]) -- lim sups logn(pc( (M + Cx)2n) ) 

> lim supn log,~((n + 1)pc(M'~)) 

= limlogn(n + 1) + lim supn logn(pc(M'~)) 

= 1 + GKc(A) .  

The reverse inequality is obtained by a similar trick. We claim that  for any 

positive integer n, 

(M + Cx) ~ C_ M j~ ~- MJ~x + MJ~x 2 + . . .  + MJ~x ~, 

where j is the smallest positive integer satisfying 6(M) C_ MJ. Clearly this is the 

case if n = 0. Assuming the claim is proven for some fixed value of n, we find 
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that 

(M + Cx) n+l ~. 

c_ 

M ( M  + Cx) '~ + x(M + Cx) '~ 
n n 

Z MJn+l xi+ Z xMJn xl 
i = 0  i = 0  

n + l  n 

C_ Z MJ(n+l)xi § Z (Mjnx~+I + 6(MJn)x~) 
i = 0  i----0 

n + l  n + l  n + l  

C_ Z MJ(n+l)x'  + ~ Minx' + ~ MJn+J-lxi 
i = 0  i = 0  i = 0  

n + l  n + l  n + l  

C Z MJ(n+X)gi+ ~ MJ(n+l)zi+ ~ MJ(n+l)xi 
i = 0  i = 0  i = 0  

n-.t- 1 

= ~ MJ(n+l)xi, 
i = 0  

so that the claim is established for any positive exponent. We now get that 

GKc(A[x; 6]) = lim sup,~ logn(pc((M + Cx)n)) 

_< limsupn log~(pc((n + 1)MJ'~)) 

= limlog,~(n + 1) + lim sup,~ logn(pc(MJ~)) 

= 1 + GKc(A).  | 

We draw an immediate consequence which could also be established directly: 

COROLLARY 5.5: For the polynomial ring A = C[Xl,. . . ,xn] we have 

GKcA = n. 

We now turn to enveloping algebras where we are able to exploit the GK results 

on graded modules. Let g be a Lie algebra over C and assume that g is finitely 
n generated and free as a C-module, say g = ~ = 1  Xi .  C. Then one can define the 

universal enveloping A = V(g) = C(X1, . . . ,  Xn) / (XiXj  - X jX i  - [X{, Xj]). Let 

xi denote the images of X{ in U(g) and consider the natural filtration of U(g) by 

degree in the x~. The PBW-theorem (see e.g. [2, 2.1.12]) states that the ordered 

monomials {x] 1 .-.  x~ ~ I i l , . . . ,  ~n E No} form a basis for U(~) as a C-module. It 

follows the gr(U(g)) is a polynomial ring in n variables over C. Thus by 4.7 and 

5.5 we get the following: 

PROPOSITION 5.6: With the above notation GKcU(g) = n. 
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Further, it is possible to get results for quotients of enveloping algebras as 

follows: Suppose I is an ideal of U(g) where ~ is as above, and let M be a 

finitely generated U(g)/I-module equipped with the standard filtration. Then 

G K c M  = G K c  gr(M),  and since the latter is a finitely generated module over 

an affine commutat ive algebra, this number is an integer which cannot exceed n. 

Thus 

PROPOSITION 5.7: With the above notation, G K v M  is an integer less than n 

for any finitely generated U ( g ) / I-module M.  

Another class of algebras amenable to this type of results is Weyl Algebras. 

For any base ring C one can consider the nth  Weyl algebra 

As(C)  = C { X l , . . . , X n , Y l , . . .  ,y~} 

where the relations are that  [xl, xj] = [y~, yj] = 0 and xiyj  - yjx~ = 5~j. Filtering 

An(C) by degree in the generators it follows that  gr(A~(C)) _ C [ z l , . . . ,  z2~] and 

hence we have 

PROPOSITION 5.8: With the above notation, GKcA~(C)  -- 2n. 
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